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S U M M A R Y  
Shuman's method of ffltering short-wave components is discussed. In certain cases, this method can be used to prevent 
nonlinear instabilities in numerical calculations. As illustrative example, the computation of a detached shock in front 
of a blunt body is considered. 

1. Introduction 

For numerical work in weather prediction Shuman [1] devised a method of filtering short-wave 
components. 

The application of dissipative finite-difference schemes for the numerical computation of 
flowfields containing shock waves, yields a damping of short Fourier components. However, 
the damping is absent for selective components of the solution. These encountered oscillations, 
which have no physical meaning, can be suppressed by applying Shuman's method. In certain 
cases this even appears to remove nonlinear instabilities as with the computation of a detached 
shock in front of a blunt body. This problem has been solved numerically by Bohachevsky and 
Rubin [2], Burstein [3] and Lapidus [4]. 

Bohachevsky and Rubin used Lax's scheme which has first-order accuracy and generally 
does not show nonlinear instabilities. However, it yields a shock which is spread out over a 
large number of mesh spacings. The scheme obtained by Lax and Wendroff has been applied 
by Burstein. To prevent nonlinear instabilities, an artificial viscosity term is added here. 

Lapidus described the smoothing of short components by means of a t'mite-difference smooth- 
ing operator which is not an integral part of the difference approximation. 

The complicacy of the second-order accurate methods used by Burstein and Lapidus makes 
them laborious to program. Our objective was to devise a method which has the simplicity of 
Lax's method, but yields a shock which is considerably narrower. 

2. One-Dimensional Considerations 

Consider the system of equations of the form 

u t + L = O ,  - ~ < x < + o e ,  t > 0 ,  (2.1) 

where u is a p-component vector function ofx and t, a n d f  (u) is a known vector function of u. 
After differentiation we obtain the quasi-linear system ut + A (u)ux= 0, with A = gradf. The 

system will be hyperbolic, i.e., the matrix A has p real and different eigenvalues for all values ofu. 
The numerical integration of system (2.1) will be carried out by means of explicit difference 

schemes. To this end an orthogonal mesh system with constant mesh spacings Ax and At is 
imposed on the half plane - oo < x < + 0% t > 0. 

A difference approximation to system (2.1) which has been introduced by Richtmyer [5] is 

= +uj_l)---~)L(fj+l--f j_l)  gJ (2.2) 
ill+2 - -  . l  z l  g ' l + l  tel+ l'~ 
j - -  U j - - / L ~ J j + I - - J j _ I I  , 
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where u(j Ax, 1At)=-@ and 2=  At/Ax. 
The provisional values at the time t = ( / +  1)At are obtained from the first step, whilst the 

second step yields the final values at t = (l + 2) A t. It is well known that this scheme is consistent 
with system (2.1) and has a truncation error which is 0 [ (A t) 3] in the smooth part of the solution. 
We suppose that 2=0(1). 

If u (x, t) is periodic in x, then substitution of the component ~q)e iqx of the Fourier series for 
u (x, t) yields in the case of a constant matrix A 

2 = G ( A t ,  (q) 

with 

G (At, q)= I -  i2A sin (24)-22 A 2 { 1 -  cos (23)}. (2.3) 

For the derivation of relation (2.3) see [6]. 
G is called the amplification matrix, I is the unit matrix, whilst ~ = q Ax. 
If the eigenvalues of matrix A are denoted by av, then the eigenvalues gv of matrix G are 

Ov (A t, q) = 1 - i# sin (2{)- #2 { 1 - cos (24) }, 

where/~ = 2a~, v = 1, 2, ..., p. 
In [7] we obtained the necessary and sufficient stability condition for scheme (2.2): 

I#1 < 1, 

and derived 

[gv] 2 = 1 - 4# 2 (1 - # 2 )  sin 4 4. (2.4) 

From the last relation we concluded that Richtmyer's scheme (2.2) is dissipative of fourth order, 
provided that I#[ < 1. For definitions of stability and dissipation see [8]. 

Scheme (2.2) has no dissipation in three cases (see (2.4)): 
(1) I#l = 1 ;  
(2) # = 0 ;  
(3) sin ~ -- 0. 

If the wavelength is denoted by L, then we may conclude from the relation L/Ax = 2re/{, that 
case (3) is present if, for instance, L = 2Ax, representing the length of the longest wave which is 
not damped by ou r  difference app.roximation. 
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Figure 1. Shock calculation with equation ut+u~=0 and Richtmyer's scheme; Ax=0.04, At=0.02. 

Figure 1 shows the initial values and solutions at the times t = 5 and t = 10 of the equation 
ut + ux = 0, which is a special form of system (2.1). The amplified short-wave pulses can clearly 
be observed. 
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These oscillations can be damped by the following smoothing dement described by Shuman 
0]: 

. J + ~  " ' + ~ "  '+2 - ' + ~ '  (2.5) �9 = N [ U j + l W Z l l  j + U j - I J .  

Substitution of the Fourier component ~(q) e ~qx into (2.5) yields 

"{'7) '̂l +2  = �89 +cos  sl ~ uc~)~'+2 . (2.6) 

The multiplicative factor of (2.6) is real, so that the phases of the components are unaffected. 
However damping occurs for the selected components with about cos { = - 1, or, for instance, 
again L = 2Ax. 

Because of the linearity of (2.5) the factor �89 +cos  4) is independent ofj .  
It is clear that the mean value of a field of infinite extent is not affected by (2.5) so that the 

conservation (see [8]) is still present. 
By means of a Taylor expansion about  x = j A x  we obtain from (2.5): 

. '  = .  + �88 (4 x) 2 .x~ + o [ (d x)~]. 

Thus the element (2.5) yields dissipation to our difference approximation. 
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Figure 2. Similar to Fig. 1, except that smoothing has been applied. - . . . . .  exact solution. 

Figure 2 is similar to Figure 1, except that the operator (2.5) was applied after every two steps 
of scheme (2.2). 

In the nonlinear case not all oscillations may be damped out completely, as the example 
in the next section shows. 

The three-step scheme consisting of the combined equations (2.2) and (2.5) has first-order 
accuracy. 

3. A Two-Dimensional Example 

3.1. Preliminary 

The two-dimensional version of Richtmyer's scheme for the hyperbolic system of partial 
differential equations wt +fx + hy = 0, is 

1 A t  , 1 A t  .h t  t 
W},+k I = �88 1,k + W~_ l,k + WJ, k+ ,+ W~,k- 1)--~ Ax  ( f j+ l ,k - - f J -  ,,g)--�89 ~yy ( j,k+l -- hj,k- 1) 

Wt+2 l At te t+l  r  At  thl+ 1 &t+l  ~ (3.1) 
j ,k ~- Wj ,k  - -  A X  ~'JJ+ 1 , k - - J  j -  1,k), -- Ayy ~, j ,k+ 1 - - " j , k -  1J" 
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Here the notation w),k = w(j A x, k Ay, l A t) has been used. 
Suppose that the matrices A and B denote the Jacobians o f f  (w) and h (w) respectively. 
Substitution of the Fourier component ~(q,,) e icqx + ry) into difference scheme (3.1) with constant 

matrices A and B yields 

~t+2 G(At, q, r)Cv l (q,r) = (q,r) , 
where 

G(At, q,r)= I - i  (cos ~+cos fl) At  (A sin c~+B sin B)-2{  A t ( A  sin e+B sin ~)/z; 
Ax Ax 

~= qAx, fi = rAy. 

G is called the amplification matrix again. 
We apply scheme (3.1) to the two-dimensional equations of a polytropic gas, 

0p 8m 0n = ~  

Om c3 13S7 m 2 ( 1 - 7 ) (  --2 p ) }  ~ y y ( 7 )  = 0  - -  -~n2 0 

& + c3x [ 2 p 

+yy p 

& + 8x ~ (m2+nZ)+7 + ~yy 2 O ~ (m2+n2)+7- -  ~ 0. (3.2) 

p is the density, E is the energy, i.e., the sum of internal and kinetic energy, and y is the ratio 
of specific heats, m and n denote pu and pv respectively, where u and v are the horizontal and 
vertical flow speed. The pressure p has been eliminated by means of the relation 

p = ( y -  1){E-(m 2 +n2)/(2,)}. 

The four equations (3.2) represent the conservation of mass, momentum (two components) 
and energy, in that order. By means of a similarity transformation Richtmeyer and Morton [8] 
derived in the case Ax=Ay for the eigenvalues g~ of matrix G 

Ig~l 2 = (1-2/,2) 2 +#~ (cos e+cos  fl)2 (v = 1, 2, 3, 4) 

where 

u' (3.3) #~= (At/Ax)x/sinZe+sinZ fl u' + 
~d I - -  

and u '= (u sin e-~-v sin fl)/x/sin 2 e+sin  z/~; c is the local sound speed. The condition (At/Ax). 
(c+ ~ <  l/x/2 appears to be necessary for stability. 

From relation (3.3) it is clear that the difference scheme (3.1) has no dissipation if at least one 
of the/~ equals zero and in certain cases the difference scheme may be unstable then. This will 
occur with the calculation of a detached shock before a rectangular body moving with constant 
supersonic speed along its axis of symmetry. This stationary problem will be solved by means of 
a converging process using the non-stationary equations (3.2). 

For this purpose we introduce dimensionless variables through the free-stream values of the 
density and sound speed, denoted by P~o and ca in the upstream region before the shock: 

p = p/p , = m/(p  = nl(p  E = et(p  c k ) .  

Substitution of these new variables together with Y~=x/L, y=y/L and f=tcoo/L, where L 
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denotes some representative length, into the equations (3.2) does not change these equations. 
Below we shall omit the bars. 
' Because of the symmetry of the problem only the upper half of the body with its surrounding 

flow is taken into account. 
We shall use constant values of Ax, Ay and At, whilst Ax =Ay. 

3.2. Initial Conditions 

Figure 3 shows a discontinuity that was initially prescribed to facilitate the process at the early 
stages. At the downstream side of the discontinuity the values of the variables p, m, n and E 
are calculated by using the Rankine-Hugoniot conditions. For the lower part, where the dis- 
continuity is perpendicular to the axis of symmetry, these conditions are given by I f ]  =0, 
where [ ~ denotes the jump across the discontinuity. 

For the upper part the conditions are given by I f ]  - [hi = 0. The dimensionless free-stream 
values are 

1 
poo 1, moo Moo, noo 0, Eoo 1 2 . 

. . . .  + 1)' 
M is the local Mach number. 

Therefore, together with the geometry of the body, only the values of Moo and 7 are to be 
specified to determine the problem uniquely. 

3.3. Boundary Conditions 

Except for the left boundary, the boundary conditions are imposed by means of rows of virtual 
points (see Fig. 4). 
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Figure 3. Initial discontinuity before the body. 
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Figure 4. Boundaries with lines of virtual points. 
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At the axis of symmetry (y = 0) we take as conditions at every time t = (l + 1)A t: 

f l j , - 1  = Pj ,1  , m j , - 1  = mj ,1  , n j , - 1  ~- --/~/j,1 , E j , - 1  = E j , 1  �9 

Similar conditions are prescribed on the upper boundary of the body, and, interchanging the 
conditions for m and n, on the front side of the body. 

On the upstream boundary of the flow region (x = 0) the variables will have the free-stream 
values. 

On the downstream boundary and the upper boundary of the flow region we impose the 
conditions, representing the continuity of the first derivatives, in directions which are situated 
between the directions of the characteristics in the steady case (see Fig. 6). In this way, the 
influence of the condition which has been specified in some point of the boundary is directed 
into the domain of dependence of this point. On the downstream boundary (x = J Ax) we thus 
have at every time t = (l + 1) A t : 

P J  + 1,k ~ 2pS , k  - -  P J-  1,k , 

and the' same condition for m, n and E. 
On the upper boundary ( y = K A y )  we have 

P j +  t ,K+ I = 2Pj ,K--Pj-1 ,K-t  , 

and the same condition for m, n and E. 
The upper boundary will be taken so far from the body that the lower characteristics pro- 

ceeding from this boundary behind the shock do not intersect or touch the sonic line (see Fig. 6). 
In the stationary case, which is approximated here, this region is subsonic and a disturbance in 
any of its points would influence the whole region. 

3.4. Numerical Results 

The computation performed by applying scheme (3.1) to the system (3.2), together with the 
initial and boundary conditions described above, yields unstable results at the early stages. We 
observed an unlimited growth of short-wave components near the axis of symmetry : within 
the shock and at the body, and also at the top of the body near the corner. 

Around the stagnation point we have u ~ 0 and v ~ 0, and thus u '~  0, whilst near the top of 
the body, i.e., at the lower part of the sonic line, u ~ c ,  and thus u '~c .  

It follows that in both cases relation (3.3) yields [g~{ ~ 1 and no damping is present locally. 
This is especially true for the wave components for which is valid cos cr + cos fl = 0. 

The following finite-difference smoothing operator appears to stabilize the solution 
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Figure  5. Densi t ies  a long  the coord ina te  y = 30 at  the t imes t = 0,50 A t, 100 d t, ..., 700 At. M~ = 4,3, 7 = 1,4; A x  = Ay  = 1, 
At=0 ,2 .  
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WjI,~2 1 / ' , / + 2  - - .  / + 2  - - .  / + 2  - - .  / + 2  '~ ( 3 . 4 )  
---~ ~l, W j +  l ,k-~. W j _  l ,k - ! -  Wj ,k  + 1 -I- W j , k - 1 )  . 

Substitution of the Fourier component wtq,r) e"qX+rY) into (3.4) yields 
n , ,  ^ I + 2  Wta,r)',Z+2 = �89 ,+COS p)W~q,r) 

with, as before, a = q Ax  and fi = r Ay. Again the multiplicative factor is real and damping occurs 
for the components with cos ~ + cos/~ = 0. 

Taylor expansions of equation (3.4) about the point ( jAx,  k a y )  yields 

w' = w +�88 ~ w~x +�88 w . +  0 [(dx)~, (Ay)~J, 

and thus dissipation is introduced again. 
Scheme (3.4) is applied after the two steps of equation (3.1) at every time t = (l + 2)A t and a 

stable and convergent process is obtained (see Fig. 5). 
The positions of shock and sonic line, together with the characteristics in two points of the 

upper and right boundaries are shown in Figure 6. 
Densities along some lines y = constant have been plotted in Figure 7. Because of the smooth- 

ing element, the accuracy of our approximation is of first order, i.e. we have to deal with the 
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Figure 6. Shock, sonic line and characteristics in two boundary points (t=900 At). 
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Figure 7. Density profiles along lines parallel to the axis of symmetry (t=900 At). 
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accuracy of  Lax's  scheme. This scheme consists of  the first step of  scheme (3.1), and applying 
Lax's  scheme to this problem, which needs approximately  the same computa t ion  time as (3.1) 
and (3.4) together, yields a shock which is spread out  over about  ten meshes, as against three or  
four meshes in the case of our  approximat ion.  

The smoothing  described by Lapidus  [4]  does not  completely stabilize our  calculations. 
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